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I. INTRODUCTION

The coupling of electromagnetic energy from one region to another
is an important problem in many areas of electromagnetic engineering.
Some examples are leakage from microwave ovens, electromagnetic penetration
into vehicles, and electromagnetic pulse interaction with shielded electronic
equipment.
Our approach is to first obtain the functional equations for the
general aperture to cavity to aperture coupling system using the equivalence
principle [1, Sec.3-5] and then to reduce these equations to a matrix
form via the method of moments [2]). The various matrices are interpreted
in terms of generalized network parameters, such as voltages, currents
and admittances [2,3]. The formulation of the general problem is similar
to the formulation of Auckland and Harrington, who solved for coupling
through narrow slots in thick conducting screens [4].
Subsequently the problem is specialized to the case of electrically
small circular apertures in a cylindrical cavity of circular cross section
apd it is assumed that the excitation is due to a plane wave transverse electromagnetic
(TEM) to the cylinder axis. The aperture admittances are obtained using
the concept of polarizability of apertures developed by Bethe [5,6],
and the radiation terms introduced by Harrington [7]. In general an electrically
small aperture can be described in terms of a moment solution, where 1
at least three expansion functions must be used to express the
equivalent magnetic current. However, for simplicity, we assume that
symmetry is such that one exvansion function will suffice.
The cavity region can be viewed as a short circuited cylindrical ;
waveguide [8]. Thus waveguide theory can be applied and the field in this {

reglion expanded in terms of circular waveguide modes. Furthermore,
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; we assume that all waveguide modes except the dominant TE11 mode are in the
. cutoff condition, thereby obtaining relatively simple formulas and a simple
bt equivalent circuit for the coupling problem.

Special attention has been paid to the case of TE (transverse electric
to the cylinder axis) oblique incidence upon the structure and to the
effects of cavity losses, both lossy material filling the cavity and
finite conductivity of the cylindrical conductor, on the transmission
coefficient.

Finally, our discussion is extended and we assume that two waveguide

modes, namely,the TE;, and the TMll’ propagate. TMOl, TEZl,and TE,, modes

0l
can propagate but are not excited.
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II. FORMULATION OF THE PROBLEM

The problem to be considered is that of coupling between two half-space
regions through a cylindrical cavity. Fig. 1 illustrates the cross section
of the geometry of the problem. The left-hand half space (z < 0) is
called region a, the circular cavity region (0 < p < a, 0 < z < 4)
is called region b, and the right-~hand half space (z > d) is called region
c. A circular cavity is a cylindrical cavity of circular cross section.

The boundary common to regions a and b is called the aperture A The

1°

boundary common to regions b and ¢ is called the aperture A Regions

2
a,b, and ¢ are each filled with homogeneous media of constitutive parameters
(ua, ea), (ub, eb),and (uc, ec), respectively. We are not considering

dissipation and therefore each U and each € is real. The excitation is due to ]

known sources g} and gl, with exp(jwt) time dependence, in region a. l

The equivalence principle [1, Sec. 3-5] is used to divide the original

problem into three equivalent problems, as shown in Figs. 2~4. In region

Cem a, the field is produced by the original sources g}, ﬂl, plus the equivalent

magnetic current -gl, where

M, =0 XxE (1

over the aperture region A,, all radiating in the presence of a complete

1

conductor (aperture A, shorted). 1In (1), n, is a unit vector normal to

1

Al’ and E is the electric field in the aperture A1 in the original problem.

In region b, the field is produced by the equivalent currents Hl’ given by

(1) over A, and My, where

M, = E x @)

=2

4:;

over the aperture region A2, both radiating in the presence of a conductor
completely enclosing the cylindrical cavity region b (both apertures

shorted). In (2), the unit vector éc is normal to A;, and E is the electric

field in the aperture A7 inthe original problem. Finally, in region c we
3
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have the equivalent magnetic current MZ given by (2) over the aperture
region A2, radiating inthe presence of a complete conducting plane

(aperture A, shorted).

2

The use of iﬂl in region a and M, in region b ensures continuity of

1
the tangential components of the electric field across the aperture A].

The use of -M, in region b and Mz in region ¢ ensures continuity of the

2
tangential components of the electric field across the aperture A2'
Continuity of the tangential components of H across each aperture leads to

the operator equations for the problem. The procedure is described in detail

in [3]. The result is
a _ b b _
H (M) - B (M) +H (M) = -H over A;

(3)

b b c
Et(ﬁl) - ﬂt(y_z) - Ht(_y.[z) =

|
o

over A2

where g:(gq) denotes the tangential component of H due to ﬂq radiating in
region p with all apertures shorted, and EEC denotes the tangential component
of H due to the impressed sources gé, Mi in region a with aperture A1 shorted.
Equation (3) is first solved for the equivalent magnetic currents 51 and EZ’
and then the fields in each region can be computed from these equivalent
currents.
To obtain a solution to (3), it is convenient to use the method of
moments [2]. The procedure is described in detail in [3]. The result can
be summarized as follows: Sets of expansion functions {ﬁln} in A, and }

{M, } in A, are assumed, and the equivalent currents are expressed as
Ny
LI UM
n=1
(4)
Ny

My =] Vo My
n=1

o
ek

[
=
LJ A




and substituted into (3). Symmetric products

<A, B >1 = f ] A ¢ B ds
4
(5)
<L D> = j [ € Dds
)

are defined for each aperture. Sets of testing functions {Eln} in A; and
{W2 } in A, are defined, and equations (3) are tested with each W _,
~2n 2 —qm

m = 1,2,....Nq. The result is

a > b > b > i
(Y1 V) + [Y) 0 Vg + Y0 V) =
(6)
b, b, c .2 _
[Yp,) Vy + [¥5,) ¥, + [¥5,1 ¥, = i
where
[YP } = [-<w , ®P
qa] T 17 U B M D>y oy
q g
P p
Y <W 7
[ qr] [ —qm’ Et(!i!‘n)>q]Nq b 4 Nr, q#r M
2 _ sc 8
"=l <y, B > ] N X1 ®)
->
Vo= Ugly 1 )

q

The matrices [er] are called the generalized admittances, the vector fi is
called the generalized source current, and the vectors Vq are called the
generalized voltages. A solution of the problem is obtained by solving the
matrix equations (6) for 31 and 62, which determine the equivalent
magnetic currents !1 and ﬁz by (4). 1If a Galerkin solution is used, that

is, 1if {Eln} = {gln] and {w, } = {ﬂzn} it then follows from (7) and (8) that




Py -
[qu]—[ <M N x N

P
M gtcgqn) > q]

q q
p P
Y =
[ qr] [ <-1\—4v.1m’ Ry > q]Nq *N,q#r (10)
>i _ _ sc
I = [ <_P11m’ Et > 1 ]N » 1 (11)

It is important to note that computation of [Yill involves only

b

region a , computation of [Ylll,

[Y?Z], [Ygl],and[Ygz] involves only region b,
and computation of [Y;Z] involves only region c. Hence, we have divided

the problem into three parts, each of which may be formulated independently,
and therefore we can use previous computations of problems having ore

of these parts in common. For example,the aperture admittances of electrically

small holes for radiation into half-space will be used in the computation of

[Yil] and [Y;zl.

10
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TEU. SPECTALLCATION 1O SMALL APERTURES, TEM FXCTTATION, AND ONV
PROVACATING M(h‘}’ LN THY cAvLYY
The problem is shown (o Fiwg, S0 1t s specitatived to clectvivally

small civeulat apertuves, ot vadid Rl and R . Fuarthermeme, it i

avumed that only one ezpansion tanetfon cach is veqgquited tor M‘ and M.

Tn veneral, a small hole will vequite three expansion tanct ions, twoe

tor the magtetic dipole moment s, and one tor the electvice dipole

wmoment  [So0ly 0 but tor vow we shall assume that svamet vy (s osuch that

e will o suttices The excitation is due to a TFM plane wave, which

in the absence ot the conduct fug structure propagates in the o divection
The dompressed mapnetic tield, in the prosence ot o complete von

ducting plane over - 0, is taken to be

niey wH e

o a’

wherte B the amplitude ot the incident mavnet e taiceld, v i a4 antt vectm

(8] \

in they divtect ton and \\‘ is the wave number ot mediam a, Yor a osmall

.

cireular aperture, this oncites only the vodivectod mapgnet te dipole made

ot the apoevtuare .-\1. Henve, we et

Moo VM

t 1
where M” i the quast statie curvent which produces the oftect ot o
vt magnetic dipele KO = 1 the v odivection, and 1s 0 coetticiont

1

te be determined. Connegquent vy the oncitatton veotor, Fa.e DY veduees

to the <calm
i BNy \
1 - H\ N _H\‘

In tecton a, one has the halt space problem adentical to that tveated

moteterence [T P the above excitat ton the apertare admittance
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Fig. 5. Geometry of the coupling problem between two
half-space regions through small circular holes
in a circular cavity, excited by a plane wave.
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reduces to the single element

a 1 41

Y2 - +
117 23,an, 5, 2 (13)
a a

where o1 is the y-directed magnetic polarizability of a circular

aperture related to its radius R, by [9]

1

o = —R

ml (16)

Wi

3
1

and ua, Ny and Aa are the pevmeability, intrinsic impedance, and wavelength
of medium a, respectively.

In region b, the cavity part of the problem,g1 excites the TE and
TM circular waveguide modes having a modal magnetic vector with nonzero

y component at the cylinder axis. The modes excited by Hl are the TE1p

and TMlp for all P. These modes will excite only the y-directed
magnetic dipole mode of the aperture A2. Hence we let
My = Vot an

where 521 is the quasi-static current which produces the effect of
a unit magnetic dipole K& = 1 in the y direction, and Vo1 is a
complex coefficient to be determined.
The transverse (to z) components of the electric and magnetic fields
due to Erl are called gk(ﬂrl) and ﬁt(ﬁrl), respectively, and are expanded

in terms of waveguidemodes as [1, Sec. 8~1) and [8]

E M) = g Vr11(2) & a8
and
B M) z Tr:(2) By (19
13 :




Here e, and hi are the normalized modal electric and magnetic field vectors
and vrli(z) and Irli(z) are the modal voltages and currents due to M only,
calculated for the equivalent problem. The summations in (18) and (19)

are assumed to be over all modes, both TE and TM if necessary. The total

transverse (to z) electric and magnetic fields are then given, respectively,by

E, = VB (M) - VB (Myy) (20)
and
Be = VB () -Vl () (21
In the one-term Galerkin solution, the cavity matrix of admittances
becomes
P P J-5v2..(0) Y. cot k,d -3V, 1,(0) V,q4(d) Yy csc k,d
11 ) ¢ M1t i 1 et 211 i
v o4 §-3v .. (0) V. (d) Y, csc k.d J-3V5,4(d) Y, cot k.d
21 22 i 11i 21i i i i 211 i
J L (22)
where Y1 is the ith waveguide mode characteristic admittance, ki is the

ith waveguide mode number, and

V111(0 = 'J f My v by ds (23)

V11 (D)

fi
—_—
—_—
=
o

My * b, ds (24)

apert

If all waveguide modes except the dominant TE11 (1 = 1) mode are in the cutoff
condition, then all Yi and ki are imaginary except Yl and kl. Note that

there are two TE modes, but only one of them is excited. We let

11
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i#1 (25)

k, = —ja1

and the elements of the admittance matrix in (22) become

1
b b 2 . .
Yll le --jnnY1 cot kld + JBll jn11n21Y1 csc kld + 3512
b j Y, csc k,d + jB -jn2 Y, cot k,d + iB
P Y Ing iy o8¢ 21 2171 1 22
21 22 J
(26)
where
M1 7 V1020008 nyy = Vo (@ (27)
= 7 vZ. (0B h o,d B, = z d (28
Bip = L V133(0By coth a;d, 22 = ) Vy4(d)B, coth oy )
i#1 i#l
= = h d
B2 = Bn 121 V111 (0) V,p(d) By cscho, (29)

Whenever a.d >> 1 (4 # 1), csch a;d > 0. Hence, and B,, may be

B2
neglected in Y?Z and Ygl, respectively. This fact is evident since the fields
due to those nonpropagating modes exist primarily in the vicinity of the
apertures, and thus their contribution to the coupling between the two
apertures is negligible. However, these fields do contribute to the input
admittances Y?l 2

of the apertures decrease,the fields become more localized, more modes

b
and Y2 of the two cavity backed apertures. As the sizes

are required for an adequate respresentation, and the proportionate

contribution of each particular mode (such as the i = 1 mode) becomes

15
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smaller. Therefore, provided the cavity sides are not close to other
boundary surfaces, the susceptances Bll and 322 are essentially the
same as the susceptance of an aperture in an infinite plane conducting

screen [10]. Hence we let,

o3 - 3 = <
B, = 3 B.. = 7 » B B.. =0 (30)

11 22
8wubR1 8wubR2

where Ub is the permeability of medium b. The matrix of admittances

Eq. (26) becomes

[ b b | [ 2
Yll le —jnllchot kld + jBll jnlln21Y1 csc kld
= (31)
Yb Yb j n,,Y, csc k.d —'n2 Y, cot k.d + jB
| Y21 22 | | Imamahy 1 Inghy 19+ 3By |
This is the two-port admittance matrix for a transmission line of
length d, having a characteristic admittance Yl’ and a propagation
constant kl, with a shunt susceptance B11 connected to its input terminal
through an ideal transformer of turns ratio nll and a shunt susgeptance
322 connected to itsoutput terminal through an ideal transformer of
turns ratio nype This two-port matrix is the part of the equivalent circuit
labeled region b in Fig. 6.
The characterization of region c¢ is similar to that of region a.
Hence, one has
Y¢ = 3 + 4T
22 j8wucRg 3n, Ai (32

where uc, Ne>» and Ac are the permeability, intrinsic impedance, and wave-
length of medium c, respectively.
Thanks to (31), the equivalent circuit for the one term moment equation (6)

is the circuit given in Fig. 6. This circuit may be reduced to the equivalent

16
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circuit of Fig. 7 because

so that for practical considerations we may take

P21 T ™11

A parameter of interest is the transfer admittance (4]

. b b a b b C

Coab Yyt (g Y () + X))

Y12°v. ° b (33
21 Y

21

-——

which allows one to calculate the strength of ﬁz = V21§21, given the
excitation T' of (14). Setting n,; = n ., in (31) and then substituting

(31) into (33), we obtain

Y = [Y‘i’1 + Y8

12 g2 ¥ 3(By; + Byy)lcos k,d

1
(34)
a . c )
2 (g + 3B (Y5 + 3By
+ 3nl Y, +

1171 n2 ¥

1171
Equation (34) can also be obtained from the equivalent circuit in Fig. 7.

]sin kld

Denoting the aperture admittances by

v¥ =6 + jB® and ¥S

=C.(:
11 99 =6 + 3B (35)

7 Bl ¥ I T gt

we can write the real and imaginary parts of Y, as given by (34) as

s e G2 (B + B,y,) + cC? + B,,)
Re(Y,,) = (6% + G)cos kyd- 5 sin k,d (36)
v 1
M1t
- a C
Im(le) (B + B~ + BH + B22)cos kld

c%° - 8% + B, )% + B,.)
2y, 11 22
11°1

+[n > Jsin k,d 37
1%

#
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R T R

To complete our formulation we need to specify the parameters re~

lated to the i =1 (TEll) dominant mode of the circular waveguide.

The normalized modal magnetic and electric field vectors of the TE 1 mode
1

in a cylindrical coordinate system are [1, Sec. 8-1]

1.841 ', 1.841 1 1.841
= -0.887 = — 032 38
) hl 0.887] o Jl( a p) sin ¢ Hp + 5 Jl( 3 p) cos ¢ g¢] (38)
' - (39)
g Th Xy
1
where Jl(x) is the Bessel function of the first kind of order 1 and Jl(x)
denotes the derivative of Jl(x) with respect to x. The modal wave number is
_ 2 1.841,2.1/2
ky = lumey, - G (40)
y »
E:— and its modal characteristic admittance is
k
_ 1
Yl = Bﬁ; (41)

Another parameter of interest is the turns ratio nyge Substitution of (38)

into (23) yields

_0.816

V1110 =~ (42)
and from (27) one readily obtains
_ 0.816

n, T T a (43)

20
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IV. POWER TRANSMITTED

The power transmitted through the cavity to region ¢ is equal to

the power dissipated in YZZ of the equivalent circuit, that is

C

2
Ptrans - 'V21l G

In terms of the transfer admittance (33), this is

II1 I2 ‘
P = I— G-
trans le

where 1% is given by (14), Y,, by (36) end (37), and ¢t = Re(Y;_Z). Here,

Y;z is given by (32).

The power incident upon the aperture A1 when the incideunce is

normal is

n —
Py c na]Ho

,2
in

A

2
1

the area of the aperture Al' The superscript n means that the power

where Ho is the amplitude of the incident field, and A = TR,” is
defined here is for normal incidence. One can define the transmission
coefficient T of the cavity to be the power transmitted through the
cavity to region ¢ normalized with respect to the incident power (46),

that is

21

]

(44)

(45)

(46)

(47)




Now, substitution from (14), (45) and (46) into (47) results in

4G 167

T = =
2 2 2
Na IY12| A 3nanc >‘c IY12| A

(48)

The transmission coefficient (48) depends on the cavity depth d

only through the parameter le. It will attain its maximum when |Y12|

is minimum. For small apertures we see that Ba>>Ga and BC>>GC. Hence, the
coefficients of the trigonometric terms in (37) are much larger than those
in (36), and we can minimize llel by setting Im(le) = 0. Doing this
and retaining only dominant terms, we obtain
a c
(B +B + B + B.,,)
12272 y (49)

tan k,d = n
B2 + Bll)(Bc +B 111

1

22)

Since the right-hand side of Eq. (49) is a small negative number,a

first order approximation to resonance is

8% + B + B, +B..)
N 11 22

kld * mm + 2 C nllYl

(8% + B, ) (3% + B,,)
or

(82 + B® + Bj, + B,,) nilYl N

d = [m+ ] =+ “(50)

res " 2

a [
(3 + Bll)(B + BZZ)

"

Here the subscript "res" denotes "at resonance", A, is the wavelength
p

1

of the dominant mode in the cavity region, and m = 1, 2, 3....

22
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Next we wish to obtain the transmission coefficient at resonance.

Using the approximations

m
cos kldres = (-1)
a c
@B +B +B,, +B,,) ,
sin kyd o~ D" a 1i = L
(B~ + Bll)(B + 322)
in (36), we obtain
Re(Y..) =(—1)m (Ga+GC)'_(Ba+BC+B + B )[,_4013_.
127 res 11 22 a
B + B
1f we introduce the parameters
i, -2 g -
= . = 2
b My b €,
H €
- e - _ e
UC-U ’ EC c
a a
R
1,3
X = (ﬁ—)
2
U
: e 1/2
we obtain n, = (EC) a
1
A= A
c - - .1/2 "a
(ucec)
23
™~
. v C

(51)

(53)

(54)

(55)

(56)




Now substituting for Ga, Ba, Bll’ B22

(30) and (32), using the parameters defined in (53) and (54), and applying the

s ¢* and BS as obtained from (15),

relations (55) and (56), we cast (52) into the form

- m 4 ~ - = = 1/2 .
Re(le)reS = (~1) 5 41+ Lc(ucec) ;
3n. A ‘
a a |
- - 212 '
_ _ _ _ ) e (U )
=IxGyy + w) o+ o 1+ I + ——] (57)
' L+ u) X(H, + 1)
e b b c
E
At resonance, (48) can be written as
- = =.,1/2
16w ec(ucec)
T = (58)
res 2,2 2
30 A7 IRe(le)resl A
and (50) as
X +0) +H (1+5) RA
dp= m=-3556 —>—<c ¢ b 231 (s
1+ ub)(ub +u) a':\
If medium a,medium b, and medium c are the same (i.e., ﬁb = ﬁc = Ec = 1) ¢

——

and if R, = R2 (i.e., X = 1), (57) reduces to

1
m+l 87
Re (Y..) = (-1) (60)
12res In A2
a a
The resonance occurs at
R
dres ® [m -3.556 ;“—7]-2— (61)
a
1
and the transmission coefficient at resonance (58) becomes
nz
Tres = 4TTA (62)
24
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The transmission cross section of the system is defined as the
area for which the incident wave contains the power transmitted by the
- systeﬁ. It follows that the transmission cross section is equal to TA.
- From (48) , one obtains

C
TA = 4G _ 167 (63)

2 2 2
r]a'Y12l 3nanc Ac'YIZI

If media a, b, and ¢ are the same, one obtains from (62) that the trans-
mission cross section at resonance becomes (TA)res = 3%2/4v independent

of the common radius R1 = R2 of the apertures. This transmission cross
section and the transmission coefficient (62) are the same as those obtained

in [7] for a small slot in a zero-thickness plane conducting screen,

resonated by a capacitor placed across its midpoint, and excited by an

incident electric field perpendicular to its axis.




V. OBLIQUE INCIDENCE UPON THE STRUCTURE (TE CASE),AND ONE PROPAGATING

MODE IN THE CAVITY

Consider a plane wave incident uponthe structure at some angle
einc in the y-z plane measured from the negative z axis, as shown in
Fig. 8. This is a TE(transverse electric to the cylinder axis) excitation.

Following an approach similar to that of sectlion ITT, we reduce the excitation

vector, Eq. (11), to the scalar

i ScC
I_ E- - - e (64)
H.y (0) =~2H cos i

where Ho is the amplitude of the incident magnetic ficld.

Except for the fact that I' is now glven by (64) instead of (14), the
equivalent circuit and its parameters remain unchanged. The power transmitted
through the cavity to region c is given by (44), and in terms of the

transfer admittance by (45)., Substitution of Ii from (64) into (45) results in

4|H [2 c052 0,
_ o c

P = =G (65)
trans
1Y,,|

where Y12 is given by (36) and (37) and cC = Re(Ygz) with Y;z given by (32).

The transmission coefficient is defined by Eq. (47). Substituting

from (65) and (46) into (47), one obtains

c

T = A6 032 5] = 16m os2 <]
2 ¢ inc 2 2 ¢ inc  (66)
n 1Yl A ngnte 1Yl 4

Note that here Pinc’ the actual power incident upon the aperture Al, is

n

inc given by (46) by

related to the power P

26
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REGION a REGION ¢
e € Her €
K
gl REGION b I
B 9, . Hob +€p | ¥
nc 2R ‘ZR ___?
z=0 z=d

Fig. 8. TE oblique incidence upon the structure.
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3 = p¢ cos 6,

inc inc fic

Eq.(66) reduces, as expected, to (48) for normal incidence (ein

28

c

= %),

(67)




VI. THE EFFECT OF CAVITY LOSSES

The previous formulation may be extended to encompass the effects
of lossy material filling the cavity and of imperfect conductivity of
the circular walls of the cavity. The previous equivalent circuit still
holds except that the modal wave number of the circular waveguide dominant
mode is changed from purely real to complex with a small imaginary part
(k1 = ki - jkl). Nevertheless, the following two simplifying assumptions
can be made: (a) The characteristic admittance Y1 can still be considered
real, and (b) the real part of the modal wave number is equal to the
wave number of the mode in the loss-free case. These assumptions are

certainly valid for the low-loss cavity. The imaginary part of the wave

number kz may be cast into the form

k= a; +a (68)
where dd is the attenuation constant due to lossy dielectric

1 "
(g, = € = JEb)

___b 1841 -1/2
o0 = 5=, [1 - k‘ba)] (69)
and o, is the attenuation constant due to imperfect conductor
R 1.841.2,-1/2 _1.841,2 1
o, = o 1 - 7 (G597 + ] (70)
b ky b (1.841)° -
1/2 _ ' 1/2 = Wy (172
Here, ny (ub/E ) kb = w(ubeb) , and RS (20 ) is the surface

resistance due to finite conductivity O.
The expected effects of lossy dielectric filling the cavity are
smaller transmitted power and broader resonance curves. Similar

effects are expected if the circular conductor has finite but small

29
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conductivity. Equating the attenuation constants of (69) and (70),

we obtain that a lossy conductor case behaves like a lossy

e = - - . = 1] "
dielectric case (eb % jgy and quality factor Qd eb/ ) if the

quality factor due to conductor losses, defined as,

n, a
Qc B bZRb - (71)
s [(1:841)2 + 1 1

a

(1.841)% - 1

is equal to the quality factor due to dielectric losses Q.

30




VII. TWO PROPACATING MODES IN THE CAVITY (TEM AND TE EXCITATIONS)

The problems to be considered are the problems of Fig. 5 (TEM
excitation) and of Fig. 8 (TE excitation) treated in sections III and
V, respectively. Here we extend our discussion and assume that two excited
waveguide modes, namely, the TE

1 and the T™™ propagate. The

1 1r

differences appear in the admittance representation of the cavity region.
The parameters of the equivalent circuits for region a and region ¢
remain unchanged, and may be extracted from sections TII and V for the
TEM and TE excitations, respectively.
If allexcited waveguide modes except the TE11 (i = 1) and TMll (i=2)

modes are in tune cutoff condition, then all Yi and ki are imaginary except Yl’

kl, YZ’ and k2' We let
id 1,2 (72)

ky = 3oy

and the elements of the admittance matrix in (22) become

. 1
2
S -3V ()Y, cot kd ~3V, 1, OV, ()Y, esc kyd
ISTRREY: 2
v _ ]
-lelz(O)Yzcot kzd-+jBll lelz(O)V212(d)Y2csc k2d+jB12
V.. (DY k.d 2 k.d
. . —jvlll(O) 211¢d)Y; esc ky -jV211(d)chot 1
[YZl Y22 -3V, . (0)V., . (d)Y k.d+jB! -1vZ _(d)Y. cot k.,d+iB!
- 3V112(00Vy15(d)Y, esc kyd+iBy, 3V512(d)Y, cot k,d+jBy,
- o




where

2 2
B', = J V.. (0)B, coth ad; B}, = )} Vo  .(d)B; coth ad (74)
11 i#1,2 11i i i 22 1#1,2 2141 i i
Y = v =
Bl, = By i#§ ) vlli(O) V,q;(d)B; esch a,d (75)

b b
, ' ' .
Whenever aid>>1 (i+4 1,2),B12 and le may be neglected in Y, and Yoy

respectively. Using an argument similar to that of section III, we
conclude again that Bil and Béz are essentially the same as the sus-

ceptance of an aperture in an infinite plane conducting screen. Thus

3 3

B! = - 2z . B! = - — (76)
11 3% P2 3
Swule SwaR2
Now, the matrix of admittances (73) becomes
P ) i v cor kd —inly daiB’ . .
11 Y12| |TInpp ¥y cot kyd —jmgpYy cot kpd+iByy o gnyyny, ¥y ese kyd¥ingon,,¥, cse kyd
vP P jn,.n, Y, csc k. d+jn, n, ¥, csck,d 02 Y 2y .
21 22 1172171 1979 M2%2%2 2 -jny ¥, cot kyd -jn,,¥, cot k,d +jB,,
an
where
71 = Vi (O
N1 = V112¢0
= - (7¢)
1 V11 (®)
Nyy = Vp12(d)

This is the two- port admittance matrix for two transmission lines of length d,

having characteristic admittances Y1 and Y,,respectively,and propagation

constants k1 and kz,respectively, with shunt susceptances Bil and Béz




connected through ideal transformers, at their input and output ports.

i The equivalent circuit for this one term moment solution is given
in Fig. 9, and it may be reduced to the equivalent circuit of Fig. 10.
This last step is due to the fact that for the propagating modes we

have

and

- Therefore, for practical considerations, we may take Ny = n11 and n22 =

The transfer admittance, defined by Eq. (33) is obtained from

Y12’
Fig. 10. That is,

2

. 2 2 2 2
+ J[(“llYl) + (n12Y2)

Y, sin kzd + n2

.22 2
4-23n11n12YlY2[1 - cos kld cos kzd] [n11 1

1272
Once the transfer admittance is obtained from (79) the transmission
coefficient may be computed from (48) and (66) for normal and oblique

incidence, respectively.

33

T = a ,C . ] ] 2
le {[Y11 + \22 + J(Bll+ B.ZZ)][nllYl cos kld sin kzd + nleZ cos k2

t\lz .

d sin kld]
a ip !t c '

Y. sin kld]-I

(79
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i The parameters related to the'I‘E11 (i = 1) and TM11 (i =2) modes should
o be specified. The normalized magnetic and electric field vectors of the
TEll mode in a cylindrical coordinate system , as given by (38) and (39),
are
1.841 _, ,1.841 : 1, L.841 v 65 ¢ ul (80)
P hl = —0.887[-—:;—— Ji(——:;——p) sin ¢ u, + 0 Jl( a p) cos ¢ LY
Its modal wave number, as given by (40), is
2 1.841,2.1/2
- - (=830 82
ky = [wiu ey ( 2 )] (82)
[~
o and its modal characteristic admittance, as given by (41), is
N
- 83
1wy (83)
- The normalized magnetic and electric field vectors of the TM11 mode
in a cylindrical coodinate system are [1, Sec. 8-1]
1 3.832 3.832 3.832
= -0. = i + ! 8
32 0.517] Jl( R p) sin ¢ u, R Jl( < p) cos ¢ g¢] (84)
e, =h, xu (85)
Its modal wave number is
_. 2 3.832,2.1/2
ky = [wn e, 0—:;—0 ] (86)
36
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—————

and its modal characteristic admittance is

Y. =

2

(L)Eb
k)

(87)

Other parameters of interest are the modal voltages V111 (0) and VllZ(O)'

Substituting (80) and (84) in (23), one obtains

Now, the turns ratios n

(89) by (78).

We have

11

V111(

v,

112

and n

11

12

0)

0)

12

are readily determined from (88) and

37
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VIII. RESULTS AND CONCLUSIONS

The transfer admittance le as given by (34) and the transmission
cross section as given by (63) for normal incidence and one propagating
mode in the cylindrical cavity were calculated and selected results
are presented and discussed below. In the following explanations of
results, an effort is made to outline how quantities of interest depend
upon electrical dimensions of the aperture-cavity-aperture problem, to
examine the effects of different dielectrics in the cavity region b
and in the half-space region c, and to look at the effects of lossy
material filling the cavity. Also, the influence of oblique incidence
(TE field) is mentioned. Finally, the case of two propagating modes
in the cavity is considered and examined by a numerical example.

The case of normal incidence and one propagating mode in the

cylindrical cavity is treated in Figs. 11-16. The parameters Y the

12°
transfer admittance, and TA, the transmission cross section, are periodic
functions in d, the depth of the cavity. Thus, for practical consideration,
they are only plotted in the neighborhood of the first resonant thick-

ness. The permeability of all regions is that of free space and the
permittivity of the different regions is specified for the different

cases. The apertures A, and A_ are assumed to be identical (i.e. R, = R2).

1 2 1

Finally, from (40) and (86) one readily obtains that the TEll mode is ‘the

only propagating mode provided

. 1/2
1.841 (ia_) / ) 3.832 Fa 1/2,\
—_— e a

27 b a 2n (E_) a

(92)

The real and imaginary parts of Y are shown in Fig. 11 for

12
a-= O.SXazum for aperture radii of 0.03Xa, 0.0SAa.and 0.1Aa, where

38
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Aa is the wavelength in the half-space region a. As expected from (36)
- and (37) , the imaginary part of Yy becomes dominant as the aperturen
become electrically smaller.

The transmission cross sections (63) for the same problem are shown in

Fig. 12. For electrically small apertures TA/Xi becomes a maximum, as
predicted by (61), at so-called resonant depths, which approach \1/2, where
\1 = 1.234Aa is the wavelength of the TE,; mode for € = €, W= by and

3 a= O.SXa. The peak value of TA/Xi for all three cases is 10 log (3/47)=

-6.221 dB, which is the resonant result implied by (62).

When the cavity is loaded with different dielectrics the transmission

) resonances occur at cavity depths farther from Xl/Z, as given by (61).

This fact is demonstrated for a = 0.32Aa, R, = R, = 0.05)\a and €,= €.= €

1 2 o

and €y = Eo0 ZEO,and 350 in Fig. 13a, Fig. 13b and Fig. 13c, respectively.

Note that A, = 2.489M | 0.928) ,and 0.680) for the cases of €, = ¢ , 2¢ »and
1 a a a b o o
360 and thus the resonance actually occurs at different cavity depths

measured in wavelengths in the half-space region a. The choice of the

cylindrical cavity radius a = 0.3?\aensures one propagdting mode in

all three cases. As the material filling the cavity becomes more dense, the
transmission resonances become wider. For instance, the variation in d for

which the transmission cross section is not less than -60 dB are

0.996 d <d < 1.004 d , 0.990 d <d < 1.010d sand 0.987d <d< 1.014 d
res res res res res res

for Ty = So, Ty = 220 and by = 360, respectively. Note that the magnitudes

of the peaks, however, are constant. This result is, of course, in

agreement with (58) which is independent of €t
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The effects ofa different dielectric filling the half-space region ¢
are depicted in Fig. 14. Here the cavity radius is a = O.Ska,and the radii

of the apertures are R, = R2 = 0.0SAa. As expected from (59), the position

1

of the resonance condition is not a function of ¢ , and therefore is

c
not affected. The peak values of the transmission cross section, however,
decay in magnitude as €. becomes larger. The result is in agreement

with (57) and (58) which reduce here (ﬁb =y, =1land x=1) to

Re(Y),) = (B 1_4T gy 5C3/2) (93)
n X
a a
3Ec3/2 xi
T = — (94
res (1 + ec3/2]2 A

where € =€ /e as defined by (53).
c ¢ a
If the dielectric filling the cavity is lossy,the expected decrease
in the transmission cross section peaks is seen in Fig. 15, which presents

the lossless case Eb =€ the lossy case Eb = (1 - j0.00l)eo, that is,

with Q factor = 1000,and the lossy case €, = (1 - j0.0l)Eo, that is, with

b

Q factor = 100. Here the cavity radius is a = O.SXa. Note that the loss
does not affect the position of the resonances. The real and imaginary

parts of Y for this case are shown in Fig. 16. As may be observed,the

12

loss does not affect the imaginary part of Y In contrast, its real

12°

2
part has changed significantly. Re(A Y,,) for the case € = (1 - j0.01)e

b

could not be shown in Fig. 16a since it varies between 19 and 29 mhos.

I1f the two apertures are of different size i.e., R, # R2’ (57) and

(58), for the case of three similar media (i.e., ﬁb = ﬂc =e. = 1),

reduce, respectively, to

= - m 41 2 - .l
Re(t)y), 0y = (D7 0y 122 A+ 00+ ) (95)
a a
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32
T = a (96)

res
T2 - L+ + —;LZ)]Z A

From (96) one can easily show that Tres is maximum when X = 1, that is
when the two apertures are identical. This is in agreement with the fact
that when Rl = R2 the power transmitted, at resonance, is equal to the
maximum power that can be delivered to a load by the source and its internmal
admittance YTI + jBl1 in Fig. 7.

The effect of TE (transverse electric to the cylinder axis) oblique

incidence is shifting the transmission cross section graphs down by

10 log(cos2 einc) decibels, where 6inc’ the angle of incidence, is shown in

Fig. 8. Otherwise, TE oblique incidence is the same as TEM normal incidence.

Hence, no further detail regarding TE oblique incidence is necessary.

Finally, thecase of normal incidence and two propagating modes in
the cylindrical cavity is treated in Fig. 17. The permeability and
permittivity of all regions are those of free space. The apertures A1
and A2 are identical and Rl = R2 = 0.0SXa. From (86) and the fact
that the wave number of the third mode, the TElz mode, 1is

5.231)2]1/2 (97)

2
ky = {wiey = (
one readily obtains that the TE11 and TM11 modes are the only propagating

modes provided

e 1/2 e 1/2
3.832 a 5.331 ., a
2m (Eb) >‘a< a < 2m (Eb) Xa (98)

Accordingly , the cavity radius is taken to be a = 0.75Aa.
The transmission cross section in Fig. 17 1is plotted in the neighbor-
hood of the first two resonant depths. The transmission cross section

peaks are located at these depths, which approach, respectively, X1/2
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1

A2 = 1.718)\a is the wavelength of the TM11 mode.

two peaks is the same and equal to -6,221 dB, which is the peak value

and X2/2, where A, = 1.086%a is the wavelength of the TE11 mode and

The magnitude of the

obtained when only one mode was propagating.




IX. DISCUSSION

Electromagnetic coupling between two half~space regions through
an aperture to cavity to aperture system has been investigated and a
simple equivalent circuit has been developed for the special case of
a circular cylindrical cavity with a small circular aperture centered
in each of its end faces. It was found that for certain cavity depths
the system becomes resonant, thereby increasing by orders of magnitude
the power transmitted by the aperture to cavity to aperture system over
what it would transmit for other cavity depths.

It should be emphasized that, if the genmeralized concept of small-
aperture polarizability which adds a radiation conductance term to the
aperture admittance had not been used, infinities in the aperture fields
and power transmitted would have occurred.

The result that, at resonances,the transmission cross section of the
coupling system is independent of the size of the apertures (provided
Rl = RZ) is to be expected because similar results have been obtained
for other transmission and scattering problems. For example, the trans-
mission width of a narrow infinitely long slot in a thick conductor at
resonance is % , regardless of its actual width (4]. Moreover, the
transmission cross section obtained here is the same as that obtained
in [7] for a small slot in a zero-thickness plane conducting screen
resonated by a capacitor placed across its midpoint,

The preceding paragraph applies only to ideal loss-free problems.
Dielectric and conductor losses can significantly decrease the trans-

mission cross section at resonance. This decrease has been demonstrated

via numerical examples.
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